

Advanced MEMS and Microsystems

Dr. Danick Briand & Prof. Guillermo Villanueva

Course content and schedule

Dates	Topics	Lecturers
18.02	Introduction	D. Briand / G. Villanueva
	Transducers review: pre-recorded lectures	
25.02	Sensors part I	D. Briand
	Exercises	
04.03	Sensors part II	D. Briand
	Industrial seminar #1	
11.03	Students presentations	D. Briand / G. Villanueva
18.03	Actuators and Optical MEMS	D. Briand
	Industrial seminar #2	
25.03	Acoustic and Ultrasonic MEMS	G. Villanueva
	Industrial seminar #3	
01.04	RF-MEMS	G. Villanueva
08.04	NEMS	G. Villanueva
15.04	Interactive session	D. Briand / G. Villanueva
29.04	Thermal and gas sensors	D. Briand
	Industrial seminar #4	
06.05	Packaging	D. Briand
13.05	Packaging	D. Briand
	Industrial seminar #5	
20.05	PowerMEMS	D. Briand
	Industrial seminar #6	
27.05	Quiz + oral exam instructions	All
	Evaluation of the course	

TODAY 15 April 2025

- Interactive Session

WEEK 29 April 2025

- Danick Briand will take over on Thermal microsystems and Gas Sensors
- Industrial Seminar 4 – APIX

WEEK 6 May 2025

- Lecture on MEMS packaging
- Hand-In Answers to Questions on Industrial Seminar 4 – APIX

Advanced MEMS and Microsystems

Interactive Session

Danick Briand & Guillermo Villanueva

EPFL – STI – IGM

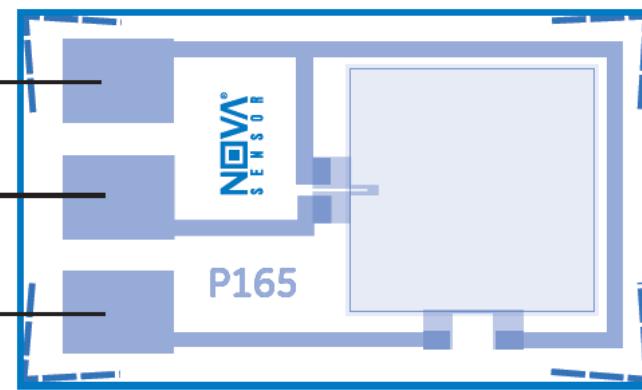
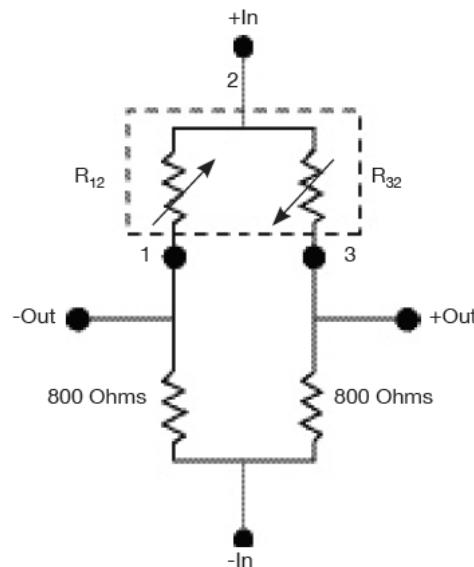
Interactive Session

Phase 1: Experts (45 min)

- Form 4 Groups of ~3-4 People
- 4 Topics are attributed
- Discuss the topic presented and answer the questions.
- Individuals are now 'ambassadors' of their topic.

Phase 2: Experts explain to Non-Experts (40 min)

- Re-Shuffle: Form 4 Groups consisting of 1 expert from each topic each.
- Each expert explains the topic to the 3 other non-experts

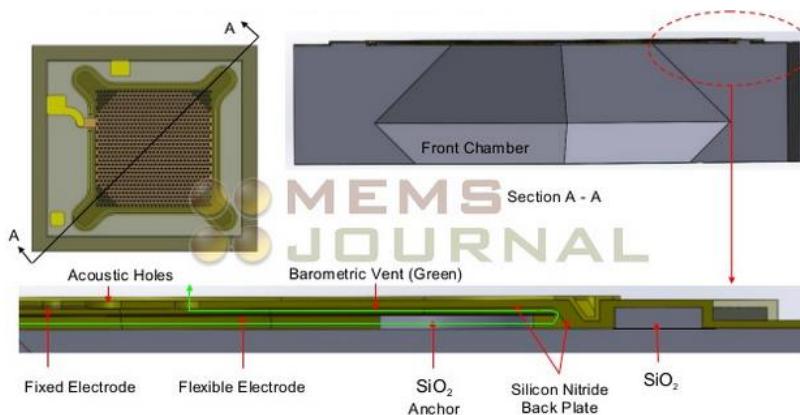
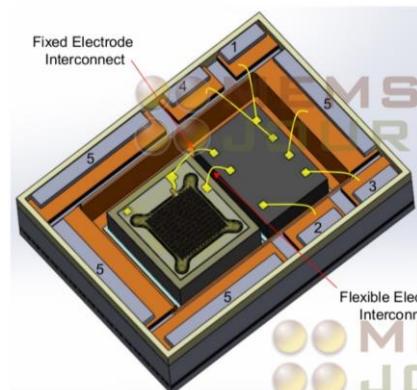


Phase 3: Re-Group (10 min)

- Re-form the initial groups.
- Re-assess the initial findings (any questions, new info that might have come up)

Phase 4: Questions & Answers by topic (4 x 10 min)

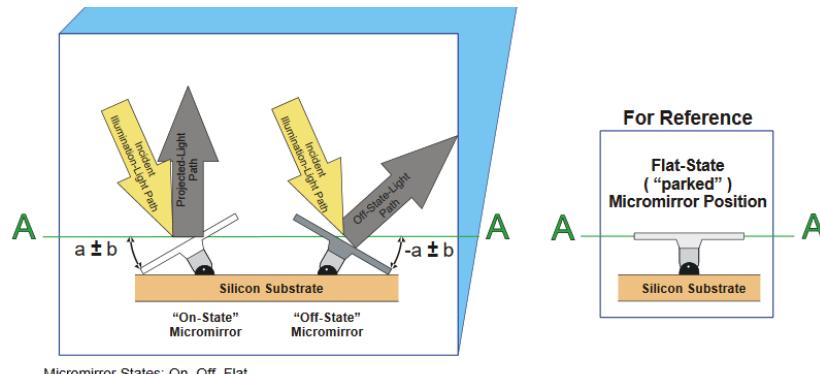
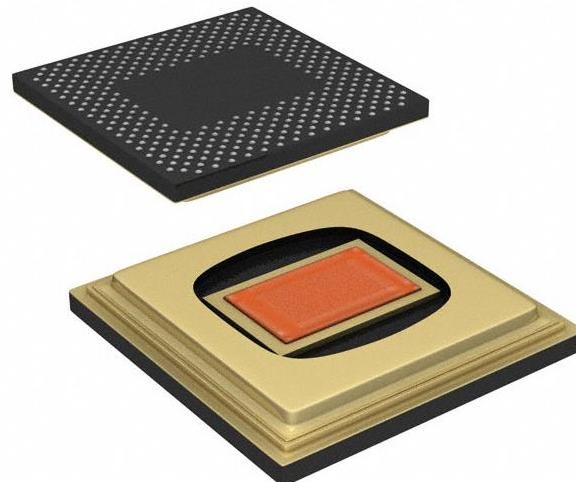
- Everybody is welcome to ask questions, precisions
- Teachers are welcome as well to ask questions

Topic 1

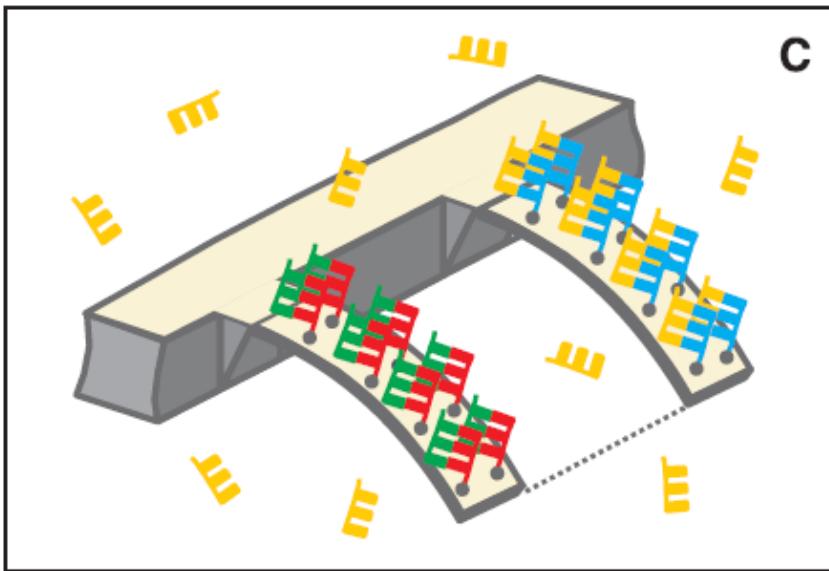
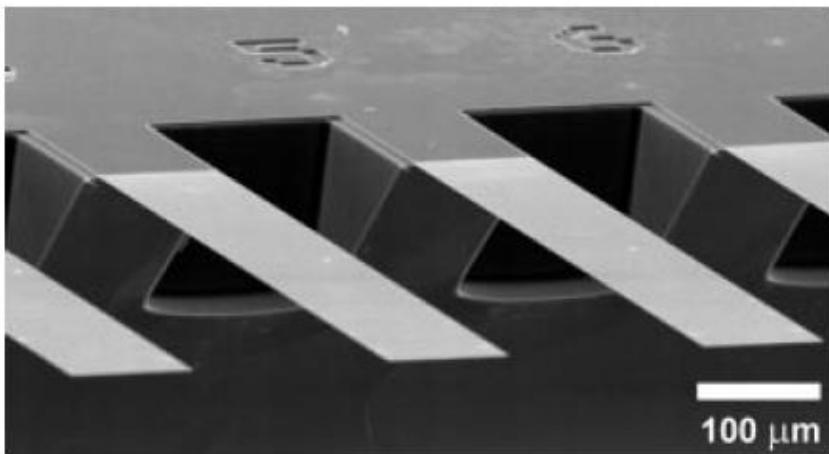


Die dimensions (l x w x h): 1150 μ m x 725 μ m x 170 μ m,

Pad Size: 200 x 150 μ m, Pad Material: Au

P165 schematic diagrams



- The figure to the left from a data sheet.
<https://www.amphenol-sensors.com/en/novasensor/pressure-sensor-die/3387-p165>
- What is it?
- How does it work?
- What is the readout mechanism and why?
- Why are the resistors placed in this way?
- How is it made?
- What are approximate membrane dimensions? Why?
- What is presumably the wafer orientation?
- What is the intended use for the sensor (applications)?
Discuss MEMS suitability for these applications.

Topic 2



- The top figure is from a datasheet (<https://www.st.com/resource/en/datasheet/mp34dt01-m.pdf>), the two bottom figures from a reverse engineering report (<https://www.slideshare.net/MikePinelisPhD/stmicroelectronics-mems-microphone-reverse-engineering-analysis>)
- What is it?
- How does it work?
- What is the readout mechanism and why?
- How is it made?
- What are approximate membrane dimensions? Why?
- What is presumably the wafer orientation?
- What is the intended use for the sensor (applications)? Discuss MEMS suitability for these applications

Topic 3

- The top figure is from from the digikey product list <https://www.digikey.com/product-detail/en/texas-instruments/DLP9000XBFLS/296-48269-ND/6595649> and the bottom figure from a data sheet. <http://www.ti.com/lit/ds/symlink/dlp9000x.pdf>
- What is it?
- How does it work?
- What is the actuation mechanism and why?
- How is it made?
- What are approximate dimensions? Why?
- What are important key data in the datasheet?
- What is the intended use (applications)? Discuss MEMS suitability for these applications

Topic 4

- The figures are from a paper:
<https://www.science.org/doi/10.1126/science.288.5464.316>
- What is it?
- How does it work?
- What is the readout mechanism and why?
- How is it made?
- What are approximate dimensions? Why?
- How would you optimize performance?
- Why are there more than 1 cantilever?